Development of machine learning predictive models for history matching tight gas carbonate reservoir production profiles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

Comparing Logistic and Michaelis-Menten Multiphasic Models for Analysis of in vitro Gas Production Profiles of some Starchy Feedstuffs

Two multi-phasic models (logistic (LOG) and Michaelis-Menten (MM)) with three sub-curves were used to describe gas production kinetics of corn (CG), barley (BG), wheat (WG) and triticale (TG) grains. In each model sub curve, 1 describes the gas production caused by fermentation of the soluble fraction, gas production caused by fermentation of the non-soluble fraction is described in sub curve 2...

متن کامل

Multi-Objective History Matching with a Proxy Model for the Characterization of Production Performances at the Shale Gas Reservoir

This paper presents a fast, reliable multi-objective history-matching method based on proxy modeling to forecast the production performances of shale gas reservoirs for which all available post-hydraulic-fracturing production data, i.e., the daily gas rate and cumulative-production volume until the given date, are honored. The developed workflow consists of distance-based generalized sensitivit...

متن کامل

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Applying Machine Learning Algorithms to Oil Reservoir Production Optimization

In well control optimization for an oil reservoir described by a set of geological models, the expectation of net present value (NPV) is optimized. This approach called robust optimization, entails running the reservoir simulator for all the reservoir models at each iteration of the optimization algorithm. Hence, robust optimization can be computationally demanding. One way to reduce the comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geophysics and Engineering

سال: 2018

ISSN: 1742-2132,1742-2140

DOI: 10.1088/1742-2140/aaca44